/* $NetBSD: dtrace_isa.c,v 1.5 2017/02/27 06:47:00 chs Exp $ */ /* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License, Version 1.0 only * (the "License"). You may not use this file except in compliance * with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END * * $FreeBSD: src/sys/cddl/dev/dtrace/i386/dtrace_isa.c,v 1.1.4.1 2009/08/03 08:13:06 kensmith Exp $ */ /* * Copyright 2005 Sun Microsystems, Inc. All rights reserved. * Use is subject to license terms. */ #include #include #include #include #include #include uintptr_t kernelbase = (uintptr_t)KERNBASE; #define INKERNEL(va) \ (((vm_offset_t)(va)) >= VM_MIN_KERNEL_ADDRESS && \ ((vm_offset_t)(va)) < VM_MAX_KERNEL_ADDRESS) struct i386_frame { struct i386_frame *f_frame; int f_retaddr; }; typedef unsigned long vm_offset_t; uint8_t dtrace_fuword8_nocheck(void *); uint16_t dtrace_fuword16_nocheck(void *); uint32_t dtrace_fuword32_nocheck(void *); uint64_t dtrace_fuword64_nocheck(void *); void dtrace_getpcstack(pc_t *pcstack, int pcstack_limit, int aframes, uint32_t *intrpc) { int depth = 0; register_t ebp; struct i386_frame *frame; vm_offset_t callpc; pc_t caller = (pc_t) solaris_cpu[cpu_number()].cpu_dtrace_caller; if (intrpc != 0) pcstack[depth++] = (pc_t) intrpc; aframes++; __asm __volatile("movl %%ebp,%0" : "=r" (ebp)); frame = (struct i386_frame *)ebp; while (depth < pcstack_limit) { if (!INKERNEL(frame)) break; callpc = frame->f_retaddr; if (!INKERNEL(callpc)) break; if (aframes > 0) { aframes--; if ((aframes == 0) && (caller != 0)) { pcstack[depth++] = caller; } } else { pcstack[depth++] = callpc; } if (frame->f_frame <= frame || (vm_offset_t)frame->f_frame >= (vm_offset_t)ebp + KSTACK_SIZE) break; frame = frame->f_frame; } for (; depth < pcstack_limit; depth++) { pcstack[depth] = 0; } } static int dtrace_getustack_common(uint64_t *pcstack, int pcstack_limit, uintptr_t pc, uintptr_t sp) { #ifdef notyet proc_t *p = curproc; uintptr_t oldcontext = lwp->lwp_oldcontext; /* XXX signal stack. */ size_t s1, s2; #endif volatile uint16_t *flags = (volatile uint16_t *)&cpu_core[cpu_number()].cpuc_dtrace_flags; int ret = 0; ASSERT(pcstack == NULL || pcstack_limit > 0); #ifdef notyet /* XXX signal stack. */ if (p->p_model == DATAMODEL_NATIVE) { s1 = sizeof (struct frame) + 2 * sizeof (long); s2 = s1 + sizeof (siginfo_t); } else { s1 = sizeof (struct frame32) + 3 * sizeof (int); s2 = s1 + sizeof (siginfo32_t); } #endif while (pc != 0) { ret++; if (pcstack != NULL) { *pcstack++ = (uint64_t)pc; pcstack_limit--; if (pcstack_limit <= 0) break; } if (sp == 0) break; #ifdef notyet /* XXX signal stack. */ if (oldcontext == sp + s1 || oldcontext == sp + s2) { if (p->p_model == DATAMODEL_NATIVE) { ucontext_t *ucp = (ucontext_t *)oldcontext; greg_t *gregs = ucp->uc_mcontext.gregs; sp = dtrace_fulword(&gregs[REG_FP]); pc = dtrace_fulword(&gregs[REG_PC]); oldcontext = dtrace_fulword(&ucp->uc_link); } else { ucontext32_t *ucp = (ucontext32_t *)oldcontext; greg32_t *gregs = ucp->uc_mcontext.gregs; sp = dtrace_fuword32(&gregs[EBP]); pc = dtrace_fuword32(&gregs[EIP]); oldcontext = dtrace_fuword32(&ucp->uc_link); } } else { if (p->p_model == DATAMODEL_NATIVE) { struct frame *fr = (struct frame *)sp; pc = dtrace_fulword(&fr->fr_savpc); sp = dtrace_fulword(&fr->fr_savfp); } else { struct frame32 *fr = (struct frame32 *)sp; pc = dtrace_fuword32(&fr->fr_savpc); sp = dtrace_fuword32(&fr->fr_savfp); } } #else pc = dtrace_fuword32((void *)(sp + offsetof(struct i386_frame, f_retaddr))); sp = dtrace_fuword32((void *)sp); #endif /* ! notyet */ /* * This is totally bogus: if we faulted, we're going to clear * the fault and break. This is to deal with the apparently * broken Java stacks on x86. */ if (*flags & CPU_DTRACE_FAULT) { *flags &= ~CPU_DTRACE_FAULT; break; } } return (ret); } void dtrace_getupcstack(uint64_t *pcstack, int pcstack_limit) { proc_t *p = curproc; struct trapframe *tf; uintptr_t pc, sp, fp; volatile uint16_t *flags = (volatile uint16_t *)&cpu_core[cpu_number()].cpuc_dtrace_flags; int n; if (*flags & CPU_DTRACE_FAULT) return; if (pcstack_limit <= 0) return; /* * If there's no user context we still need to zero the stack. */ if (p == NULL || (tf = curlwp->l_md.md_regs) == NULL) goto zero; *pcstack++ = (uint64_t)p->p_pid; pcstack_limit--; if (pcstack_limit <= 0) return; pc = tf->tf_eip; fp = tf->tf_ebp; sp = tf->tf_esp; if (DTRACE_CPUFLAG_ISSET(CPU_DTRACE_ENTRY)) { /* * In an entry probe. The frame pointer has not yet been * pushed (that happens in the function prologue). The * best approach is to add the current pc as a missing top * of stack and back the pc up to the caller, which is stored * at the current stack pointer address since the call * instruction puts it there right before the branch. */ *pcstack++ = (uint64_t)pc; pcstack_limit--; if (pcstack_limit <= 0) return; pc = dtrace_fuword32((void *) sp); } n = dtrace_getustack_common(pcstack, pcstack_limit, pc, fp); ASSERT(n >= 0); ASSERT(n <= pcstack_limit); pcstack += n; pcstack_limit -= n; zero: while (pcstack_limit-- > 0) *pcstack++ = 0; } int dtrace_getustackdepth(void) { proc_t *p = curproc; struct trapframe *tf; uintptr_t pc, fp, sp; int n = 0; if (p == NULL || (tf = curlwp->l_md.md_regs) == NULL) return (0); if (DTRACE_CPUFLAG_ISSET(CPU_DTRACE_FAULT)) return (-1); pc = tf->tf_eip; fp = tf->tf_ebp; sp = tf->tf_esp; if (DTRACE_CPUFLAG_ISSET(CPU_DTRACE_ENTRY)) { /* * In an entry probe. The frame pointer has not yet been * pushed (that happens in the function prologue). The * best approach is to add the current pc as a missing top * of stack and back the pc up to the caller, which is stored * at the current stack pointer address since the call * instruction puts it there right before the branch. */ pc = dtrace_fuword32((void *) sp); n++; } n += dtrace_getustack_common(NULL, 0, pc, fp); return (n); } void dtrace_getufpstack(uint64_t *pcstack, uint64_t *fpstack, int pcstack_limit) { proc_t *p = curproc; struct trapframe *tf; uintptr_t pc, sp, fp; volatile uint16_t *flags = (volatile uint16_t *)&cpu_core[cpu_number()].cpuc_dtrace_flags; #ifdef notyet /* XXX signal stack */ uintptr_t oldcontext; size_t s1, s2; #endif if (*flags & CPU_DTRACE_FAULT) return; if (pcstack_limit <= 0) return; /* * If there's no user context we still need to zero the stack. */ if (p == NULL || (tf = curlwp->l_md.md_regs) == NULL) goto zero; *pcstack++ = (uint64_t)p->p_pid; pcstack_limit--; if (pcstack_limit <= 0) return; pc = tf->tf_eip; fp = tf->tf_ebp; sp = tf->tf_esp; #ifdef notyet /* XXX signal stack */ oldcontext = lwp->lwp_oldcontext; if (p->p_model == DATAMODEL_NATIVE) { s1 = sizeof (struct frame) + 2 * sizeof (long); s2 = s1 + sizeof (siginfo_t); } else { s1 = sizeof (struct frame32) + 3 * sizeof (int); s2 = s1 + sizeof (siginfo32_t); } #endif if (DTRACE_CPUFLAG_ISSET(CPU_DTRACE_ENTRY)) { *pcstack++ = (uint64_t)pc; *fpstack++ = 0; pcstack_limit--; if (pcstack_limit <= 0) return; pc = dtrace_fuword32((void *)sp); } while (pc != 0) { *pcstack++ = (uint64_t)pc; *fpstack++ = fp; pcstack_limit--; if (pcstack_limit <= 0) break; if (fp == 0) break; #ifdef notyet /* XXX signal stack */ if (oldcontext == sp + s1 || oldcontext == sp + s2) { if (p->p_model == DATAMODEL_NATIVE) { ucontext_t *ucp = (ucontext_t *)oldcontext; greg_t *gregs = ucp->uc_mcontext.gregs; sp = dtrace_fulword(&gregs[REG_FP]); pc = dtrace_fulword(&gregs[REG_PC]); oldcontext = dtrace_fulword(&ucp->uc_link); } else { ucontext_t *ucp = (ucontext_t *)oldcontext; greg_t *gregs = ucp->uc_mcontext.gregs; sp = dtrace_fuword32(&gregs[EBP]); pc = dtrace_fuword32(&gregs[EIP]); oldcontext = dtrace_fuword32(&ucp->uc_link); } } else #endif /* XXX */ { pc = dtrace_fuword32((void *)(fp + offsetof(struct i386_frame, f_retaddr))); fp = dtrace_fuword32((void *)fp); } /* * This is totally bogus: if we faulted, we're going to clear * the fault and break. This is to deal with the apparently * broken Java stacks on x86. */ if (*flags & CPU_DTRACE_FAULT) { *flags &= ~CPU_DTRACE_FAULT; break; } } zero: while (pcstack_limit-- > 0) *pcstack++ = 0; } uint64_t dtrace_getarg(int arg, int aframes) { struct trapframe *frame; struct i386_frame *fp = (struct i386_frame *)dtrace_getfp(); uintptr_t *stack, val; int i; for (i = 1; i <= aframes; i++) { fp = fp->f_frame; if (P2ROUNDUP(fp->f_retaddr, 16) == (long)dtrace_invop_callsite) { /* * If we pass through the invalid op handler, we will * use the trap frame pointer that it pushed on the * stack as the second argument to dtrace_invop() as * the pointer to the stack. */ frame = (struct trapframe *)(((uintptr_t **)&fp[1])[1]); /* * Skip the three hardware-saved registers and the * return address. */ stack = (uintptr_t *)&frame->tf_esp + 1; goto load; } } /* * We know that we did not come through a trap to get into * dtrace_probe() -- the provider simply called dtrace_probe() * directly. As this is the case, we need to shift the argument * that we're looking for: the probe ID is the first argument to * dtrace_probe(), so the argument n will actually be found where * one would expect to find argument (n + 1). */ arg++; stack = (uintptr_t *)fp + 2; load: DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); val = stack[arg]; DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); return (val); } int dtrace_getstackdepth(int aframes) { int depth = 0; struct i386_frame *frame; vm_offset_t ebp; aframes++; ebp = dtrace_getfp(); frame = (struct i386_frame *)ebp; depth++; for(;;) { if (!INKERNEL((long) frame)) break; if (!INKERNEL((long) frame->f_frame)) break; depth++; if (frame->f_frame <= frame || (vm_offset_t)frame->f_frame >= (vm_offset_t)ebp + KSTACK_SIZE) break; frame = frame->f_frame; } if (depth < aframes) return 0; else return depth - aframes; } #ifdef notyet ulong_t dtrace_getreg(struct regs *rp, uint_t reg) { #if defined(__amd64) int regmap[] = { REG_GS, /* GS */ REG_FS, /* FS */ REG_ES, /* ES */ REG_DS, /* DS */ REG_RDI, /* EDI */ REG_RSI, /* ESI */ REG_RBP, /* EBP */ REG_RSP, /* ESP */ REG_RBX, /* EBX */ REG_RDX, /* EDX */ REG_RCX, /* ECX */ REG_RAX, /* EAX */ REG_TRAPNO, /* TRAPNO */ REG_ERR, /* ERR */ REG_RIP, /* EIP */ REG_CS, /* CS */ REG_RFL, /* EFL */ REG_RSP, /* UESP */ REG_SS /* SS */ }; if (reg <= SS) { if (reg >= sizeof (regmap) / sizeof (int)) { DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP); return (0); } reg = regmap[reg]; } else { reg -= SS + 1; } switch (reg) { case REG_RDI: return (rp->r_rdi); case REG_RSI: return (rp->r_rsi); case REG_RDX: return (rp->r_rdx); case REG_RCX: return (rp->r_rcx); case REG_R8: return (rp->r_r8); case REG_R9: return (rp->r_r9); case REG_RAX: return (rp->r_rax); case REG_RBX: return (rp->r_rbx); case REG_RBP: return (rp->r_rbp); case REG_R10: return (rp->r_r10); case REG_R11: return (rp->r_r11); case REG_R12: return (rp->r_r12); case REG_R13: return (rp->r_r13); case REG_R14: return (rp->r_r14); case REG_R15: return (rp->r_r15); case REG_DS: return (rp->r_ds); case REG_ES: return (rp->r_es); case REG_FS: return (rp->r_fs); case REG_GS: return (rp->r_gs); case REG_TRAPNO: return (rp->r_trapno); case REG_ERR: return (rp->r_err); case REG_RIP: return (rp->r_rip); case REG_CS: return (rp->r_cs); case REG_SS: return (rp->r_ss); case REG_RFL: return (rp->r_rfl); case REG_RSP: return (rp->r_rsp); default: DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP); return (0); } #else if (reg > SS) { DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP); return (0); } return ((&rp->r_gs)[reg]); #endif } #endif static int dtrace_copycheck(uintptr_t uaddr, uintptr_t kaddr, size_t size) { ASSERT(kaddr >= kernelbase && kaddr + size >= kaddr); if (uaddr + size >= kernelbase || uaddr + size < uaddr) { DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR); cpu_core[cpu_number()].cpuc_dtrace_illval = uaddr; return (0); } return (1); } void dtrace_copyin(uintptr_t uaddr, uintptr_t kaddr, size_t size, volatile uint16_t *flags) { if (dtrace_copycheck(uaddr, kaddr, size)) dtrace_copy(uaddr, kaddr, size); } void dtrace_copyout(uintptr_t kaddr, uintptr_t uaddr, size_t size, volatile uint16_t *flags) { if (dtrace_copycheck(uaddr, kaddr, size)) dtrace_copy(kaddr, uaddr, size); } void dtrace_copyinstr(uintptr_t uaddr, uintptr_t kaddr, size_t size, volatile uint16_t *flags) { if (dtrace_copycheck(uaddr, kaddr, size)) dtrace_copystr(uaddr, kaddr, size, flags); } void dtrace_copyoutstr(uintptr_t kaddr, uintptr_t uaddr, size_t size, volatile uint16_t *flags) { if (dtrace_copycheck(uaddr, kaddr, size)) dtrace_copystr(kaddr, uaddr, size, flags); } uint8_t dtrace_fuword8(void *uaddr) { if ((uintptr_t)uaddr >= kernelbase) { DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR); cpu_core[cpu_number()].cpuc_dtrace_illval = (uintptr_t)uaddr; return (0); } return (dtrace_fuword8_nocheck(uaddr)); } uint16_t dtrace_fuword16(void *uaddr) { if ((uintptr_t)uaddr >= kernelbase) { DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR); cpu_core[cpu_number()].cpuc_dtrace_illval = (uintptr_t)uaddr; return (0); } return (dtrace_fuword16_nocheck(uaddr)); } uint32_t dtrace_fuword32(void *uaddr) { if ((uintptr_t)uaddr >= kernelbase) { DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR); cpu_core[cpu_number()].cpuc_dtrace_illval = (uintptr_t)uaddr; return (0); } return (dtrace_fuword32_nocheck(uaddr)); } uint64_t dtrace_fuword64(void *uaddr) { if ((uintptr_t)uaddr >= kernelbase) { DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR); cpu_core[cpu_number()].cpuc_dtrace_illval = (uintptr_t)uaddr; return (0); } return (dtrace_fuword64_nocheck(uaddr)); }