/* $NetBSD: arm_fdt.c,v 1.20 2021/10/10 13:03:09 jmcneill Exp $ */ /*- * Copyright (c) 2017 Jared D. McNeill * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include "opt_arm_timer.h" #include "opt_efi.h" #include "opt_modular.h" #include __KERNEL_RCSID(0, "$NetBSD: arm_fdt.c,v 1.20 2021/10/10 13:03:09 jmcneill Exp $"); #include #include #include #include #include #include #include #include #include #include #include #include #ifdef EFI_RUNTIME #include #include #endif static int arm_fdt_match(device_t, cfdata_t, void *); static void arm_fdt_attach(device_t, device_t, void *); static void arm_fdt_irq_default_handler(void *); static void arm_fdt_fiq_default_handler(void *); #ifdef EFI_RUNTIME static void arm_fdt_efi_init(device_t); static int arm_fdt_efi_rtc_gettime(todr_chip_handle_t, struct clock_ymdhms *); static int arm_fdt_efi_rtc_settime(todr_chip_handle_t, struct clock_ymdhms *); static struct todr_chip_handle efi_todr; #endif CFATTACH_DECL_NEW(arm_fdt, 0, arm_fdt_match, arm_fdt_attach, NULL, NULL); struct arm_fdt_cpu_hatch_cb { TAILQ_ENTRY(arm_fdt_cpu_hatch_cb) next; void (*cb)(void *, struct cpu_info *); void *priv; }; static TAILQ_HEAD(, arm_fdt_cpu_hatch_cb) arm_fdt_cpu_hatch_cbs = TAILQ_HEAD_INITIALIZER(arm_fdt_cpu_hatch_cbs); static void (*_arm_fdt_irq_handler)(void *) = arm_fdt_irq_default_handler; static void (*_arm_fdt_fiq_handler)(void *) = arm_fdt_fiq_default_handler; static void (*_arm_fdt_timer_init)(void) = NULL; int arm_fdt_match(device_t parent, cfdata_t cf, void *aux) { return 1; } void arm_fdt_attach(device_t parent, device_t self, void *aux) { const struct arm_platform *plat = arm_fdt_platform(); struct fdt_attach_args faa; aprint_naive("\n"); aprint_normal("\n"); DISABLE_INTERRUPT(); #ifdef EFI_RUNTIME arm_fdt_efi_init(self); #endif plat->ap_init_attach_args(&faa); faa.faa_name = ""; faa.faa_phandle = OF_peer(0); config_found(self, &faa, NULL, CFARGS_NONE); } const struct arm_platform * arm_fdt_platform(void) { static const struct arm_platform_info *booted_platform = NULL; __link_set_decl(arm_platforms, struct arm_platform_info); struct arm_platform_info * const *info; if (booted_platform == NULL) { const struct arm_platform_info *best_info = NULL; const int phandle = OF_peer(0); int match, best_match = 0; __link_set_foreach(info, arm_platforms) { const struct device_compatible_entry compat_data[] = { { .compat = (*info)->api_compat }, DEVICE_COMPAT_EOL }; match = of_compatible_match(phandle, compat_data); if (match > best_match) { best_match = match; best_info = *info; } } booted_platform = best_info; } /* * No SoC specific platform was found. Try to find a generic * platform definition and use that if available. */ if (booted_platform == NULL) { __link_set_foreach(info, arm_platforms) { if (strcmp((*info)->api_compat, ARM_PLATFORM_DEFAULT) == 0) { booted_platform = *info; break; } } } return booted_platform == NULL ? NULL : booted_platform->api_ops; } void arm_fdt_cpu_hatch_register(void *priv, void (*cb)(void *, struct cpu_info *)) { struct arm_fdt_cpu_hatch_cb *c; c = kmem_alloc(sizeof(*c), KM_SLEEP); c->priv = priv; c->cb = cb; TAILQ_INSERT_TAIL(&arm_fdt_cpu_hatch_cbs, c, next); } void arm_fdt_cpu_hatch(struct cpu_info *ci) { struct arm_fdt_cpu_hatch_cb *c; TAILQ_FOREACH(c, &arm_fdt_cpu_hatch_cbs, next) c->cb(c->priv, ci); } static void arm_fdt_irq_default_handler(void *frame) { panic("No IRQ handler installed"); } static void arm_fdt_fiq_default_handler(void *frame) { panic("No FIQ handler installed"); } void arm_fdt_irq_set_handler(void (*irq_handler)(void *)) { KASSERT(_arm_fdt_irq_handler == arm_fdt_irq_default_handler); _arm_fdt_irq_handler = irq_handler; } void arm_fdt_fiq_set_handler(void (*fiq_handler)(void *)) { KASSERT(_arm_fdt_fiq_handler == arm_fdt_fiq_default_handler); _arm_fdt_fiq_handler = fiq_handler; } void arm_fdt_irq_handler(void *tf) { _arm_fdt_irq_handler(tf); } void arm_fdt_fiq_handler(void *tf) { _arm_fdt_fiq_handler(tf); } void arm_fdt_timer_register(void (*timerfn)(void)) { if (_arm_fdt_timer_init != NULL) { #ifdef DIAGNOSTIC aprint_verbose("%s: timer already registered\n", __func__); #endif return; } _arm_fdt_timer_init = timerfn; } #ifdef __HAVE_GENERIC_CPU_INITCLOCKS void cpu_initclocks(void) { if (_arm_fdt_timer_init == NULL) panic("cpu_initclocks: no timer registered"); _arm_fdt_timer_init(); ENABLE_INTERRUPT(); } #endif void arm_fdt_module_init(void) { #ifdef MODULAR const int chosen = OF_finddevice("/chosen"); const char *module_name; const uint64_t *data; u_int index; paddr_t pa; vaddr_t va; int len; if (chosen == -1) return; data = fdtbus_get_prop(chosen, "netbsd,modules", &len); if (data == NULL) return; for (index = 0; index < len / 16; index++, data += 2) { module_name = fdtbus_get_string_index(chosen, "netbsd,module-names", index); if (module_name == NULL) break; const paddr_t startpa = (paddr_t)be64dec(data + 0); const size_t size = (size_t)be64dec(data + 1); const paddr_t endpa = round_page(startpa + size); const vaddr_t startva = uvm_km_alloc(kernel_map, endpa - startpa, 0, UVM_KMF_VAONLY | UVM_KMF_NOWAIT); if (startva == 0) { printf("ERROR: Cannot allocate VA for module %s\n", module_name); continue; } for (pa = startpa, va = startva; pa < endpa; pa += PAGE_SIZE, va += PAGE_SIZE) { pmap_kenter_pa(va, pa, VM_PROT_ALL, 0); } pmap_update(pmap_kernel()); module_prime(module_name, (void *)(uintptr_t)startva, size); } #endif /* !MODULAR */ } #ifdef EFI_RUNTIME static void arm_fdt_efi_init(device_t dev) { uint64_t efi_system_table; struct efi_tm tm; int error; const int chosen = OF_finddevice("/chosen"); if (chosen < 0) return; if (of_getprop_uint64(chosen, "netbsd,uefi-system-table", &efi_system_table) != 0) return; error = arm_efirt_init(efi_system_table); if (error) return; aprint_debug_dev(dev, "EFI system table at %#" PRIx64 "\n", efi_system_table); if (arm_efirt_gettime(&tm, NULL) == 0) { aprint_normal_dev(dev, "using EFI runtime services for RTC\n"); efi_todr.cookie = NULL; efi_todr.todr_gettime_ymdhms = arm_fdt_efi_rtc_gettime; efi_todr.todr_settime_ymdhms = arm_fdt_efi_rtc_settime; todr_attach(&efi_todr); } } static int arm_fdt_efi_rtc_gettime(todr_chip_handle_t tch, struct clock_ymdhms *dt) { struct efi_tm tm; efi_status status; status = arm_efirt_gettime(&tm, NULL); if (status != 0) return EIO; dt->dt_year = tm.tm_year; dt->dt_mon = tm.tm_mon; dt->dt_day = tm.tm_mday; dt->dt_wday = 0; dt->dt_hour = tm.tm_hour; dt->dt_min = tm.tm_min; dt->dt_sec = tm.tm_sec; return 0; } static int arm_fdt_efi_rtc_settime(todr_chip_handle_t tch, struct clock_ymdhms *dt) { struct efi_tm tm; efi_status status; memset(&tm, 0, sizeof(tm)); tm.tm_year = dt->dt_year; tm.tm_mon = dt->dt_mon; tm.tm_mday = dt->dt_day; tm.tm_hour = dt->dt_hour; tm.tm_min = dt->dt_min; tm.tm_sec = dt->dt_sec; status = arm_efirt_settime(&tm); if (status != 0) return EIO; return 0; } #endif