/* $NetBSD: pwmregulator.c,v 1.4 2024/02/07 04:20:28 msaitoh Exp $ */ /* * Copyright (c) 2020 Ryo Shimizu * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ #include __KERNEL_RCSID(0, "$NetBSD: pwmregulator.c,v 1.4 2024/02/07 04:20:28 msaitoh Exp $"); #include #include #include #include #include #include static int pwmregulator_match(device_t, cfdata_t, void *); static void pwmregulator_attach(device_t, device_t, void *); /* fdtbus_regulator_controller_func callback */ static int pwmregulator_acquire(device_t); static void pwmregulator_release(device_t); static int pwmregulator_enable(device_t, bool); static int pwmregulator_set_voltage(device_t, u_int, u_int); static int pwmregulator_get_voltage(device_t, u_int *); static const struct fdtbus_regulator_controller_func pwmregulator_funcs = { .acquire = pwmregulator_acquire, .release = pwmregulator_release, .enable = pwmregulator_enable, .set_voltage = pwmregulator_set_voltage, .get_voltage = pwmregulator_get_voltage }; struct voltage_duty { uint32_t microvolt; uint32_t duty; /* percentage; 0-100 */ }; struct pwmregulator_softc { device_t sc_dev; pwm_tag_t sc_pwm; struct fdtbus_gpio_pin *sc_pin; struct voltage_duty *sc_voltage_table; int sc_voltage_table_num; int sc_phandle; uint32_t sc_microvolt_min; uint32_t sc_microvolt_max; uint32_t sc_dutycycle_unit; uint32_t sc_dutycycle_range[2]; bool sc_always_on; bool sc_boot_on; }; CFATTACH_DECL_NEW(pregulator, sizeof(struct pwmregulator_softc), pwmregulator_match, pwmregulator_attach, NULL, NULL); static const struct device_compatible_entry compat_data[] = { { .compat = "pwm-regulator" }, DEVICE_COMPAT_EOL }; static int pwmregulator_match(device_t parent, cfdata_t cf, void *aux) { const struct fdt_attach_args *faa = aux; return of_compatible_match(faa->faa_phandle, compat_data); } static void pwmregulator_attach(device_t parent, device_t self, void *aux) { struct pwmregulator_softc * const sc = device_private(self); const struct fdt_attach_args *faa = aux; const int phandle = faa->faa_phandle; int len; char *name; sc->sc_dev = self; sc->sc_phandle = phandle; aprint_naive("\n"); len = OF_getproplen(phandle, "regulator-name"); if (len > 0) { name = kmem_zalloc(len, KM_SLEEP); if (OF_getprop(phandle, "regulator-name", name, len) == len) aprint_normal(": %s\n", name); else aprint_normal("\n"); kmem_free(name, len); } else { aprint_normal("\n"); } if (of_getprop_uint32(phandle, "regulator-min-microvolt", &sc->sc_microvolt_min) != 0) { aprint_error_dev(sc->sc_dev, "missing regulator-min-microvolt properties\n"); return; } if (of_getprop_uint32(phandle, "regulator-max-microvolt", &sc->sc_microvolt_max) != 0) { aprint_error_dev(sc->sc_dev, "missing regulator-max-microvolt properties\n"); return; } if (of_getprop_uint32(phandle, "pwm-dutycycle-unit", &sc->sc_dutycycle_unit) != 0) sc->sc_dutycycle_unit = 100; if (of_getprop_uint32_array(phandle, "pwm-dutycycle-range", sc->sc_dutycycle_range, 2) != 0) { sc->sc_dutycycle_range[0] = 0; sc->sc_dutycycle_range[1] = 100; } len = OF_getproplen(phandle, "voltage-table"); if (len > 0) { struct voltage_duty *voltage_table = kmem_zalloc(len, KM_SLEEP); if (of_getprop_uint32_array(phandle, "voltage-table", (uint32_t *)voltage_table, len / sizeof(uint32_t)) == 0) { sc->sc_voltage_table = voltage_table; sc->sc_voltage_table_num = len / sizeof(struct voltage_duty); #ifdef PWMREGULATOR_DEBUG for (int i = 0; i < sc->sc_voltage_table_num; i++) { aprint_debug_dev(sc->sc_dev, "VoltageTable[%d]: %uuV = Duty:%u%%\n", i, voltage_table[i].voltage, voltage_table[i].duty); } #endif /* * if voltage-table is provided, the duty in the table * represents a percentage, i.e. 0-100%, so * dutycycle_unit is 100. */ sc->sc_dutycycle_unit = 100; } else { kmem_free(sc->sc_voltage_table, len); } } #ifdef PWMREGULATOR_DEBUG if (sc->sc_voltage_table_num == 0) { aprint_debug_dev(sc->sc_dev, "Duty:%u%%=%uuV, Duty:%u%%=%uuV\n", sc->sc_dutycycle_range[0], sc->sc_microvolt_min, sc->sc_dutycycle_range[1], sc->sc_microvolt_max); } #endif sc->sc_always_on = of_getprop_bool(phandle, "regulator-always-on"); sc->sc_boot_on = of_getprop_bool(phandle, "regulator-boot-on"); fdtbus_register_regulator_controller(self, phandle, &pwmregulator_funcs); /* * If the regulator is flagged as always on or enabled at boot, * ensure that it is enabled */ if (sc->sc_always_on || sc->sc_boot_on) pwmregulator_enable(self, true); } static int pwmregulator_acquire(device_t dev) { struct pwmregulator_softc * const sc = device_private(dev); /* "enable-gpios" is optional */ sc->sc_pin = fdtbus_gpio_acquire(sc->sc_phandle, "enable-gpios", GPIO_PIN_OUTPUT); sc->sc_pwm = fdtbus_pwm_acquire(sc->sc_phandle, "pwms"); if (sc->sc_pwm == NULL) return ENXIO; return 0; } static void pwmregulator_release(device_t dev) { struct pwmregulator_softc * const sc = device_private(dev); if (sc->sc_pin != NULL) { fdtbus_gpio_write(sc->sc_pin, 0); fdtbus_gpio_release(sc->sc_pin); } sc->sc_pwm = NULL; } static int pwmregulator_enable(device_t dev, bool enable) { struct pwmregulator_softc * const sc = device_private(dev); int error; if (sc->sc_pwm == NULL) return ENXIO; if (enable) { if (sc->sc_pin != NULL) fdtbus_gpio_write(sc->sc_pin, 1); error = pwm_enable(sc->sc_pwm); } else { error = pwm_disable(sc->sc_pwm); if (sc->sc_pin != NULL) fdtbus_gpio_write(sc->sc_pin, 0); } return error; } static int pwmregulator_set_voltage(device_t dev, u_int min_uvolt, u_int max_uvolt) { struct pwmregulator_softc * const sc = device_private(dev); struct pwm_config conf; int duty, d0, d1, v0, v1, uv, rc; if (sc->sc_pwm == NULL) return ENXIO; rc = pwm_get_config(sc->sc_pwm, &conf); if (rc != 0) { device_printf(dev, "%s: couldn't get pwm config, error=%d\n", __func__, rc); return rc; } uv = (min_uvolt + max_uvolt) / 2; if (sc->sc_voltage_table_num > 0) { /* find the nearest duty from voltage-table */ int i, bestidx = 0; for (i = 1; i < sc->sc_voltage_table_num; i++) { if (abs(sc->sc_voltage_table[i].microvolt - uv) < abs(sc->sc_voltage_table[bestidx].microvolt - uv)) bestidx = i; } duty = sc->sc_voltage_table[bestidx].duty; } else { /* calculate duty from voltage */ v0 = sc->sc_microvolt_min; v1 = sc->sc_microvolt_max; d0 = sc->sc_dutycycle_range[0]; d1 = sc->sc_dutycycle_range[1]; duty = (uv - v0) * (d1 - d0) / (v1 - v0) + d0; } conf.duty_cycle = duty * conf.period / sc->sc_dutycycle_unit; rc = pwm_set_config(sc->sc_pwm, &conf); if (rc != 0) device_printf(dev, "couldn't set pwm config, error=%d\n", rc); return rc; } static int pwmregulator_get_voltage(device_t dev, u_int *puvolt) { struct pwmregulator_softc * const sc = device_private(dev); struct pwm_config conf; int duty, d0, d1, v0, v1, uv, rc; if (sc->sc_pwm == NULL) return ENXIO; rc = pwm_get_config(sc->sc_pwm, &conf); if (rc != 0) { device_printf(dev, "%s: couldn't get pwm config, error=%d\n", __func__, rc); return rc; } duty = conf.duty_cycle * sc->sc_dutycycle_unit / conf.period; if (sc->sc_voltage_table_num > 0) { /* find the nearest voltage from voltage-table */ int i, bestidx = 0; for (i = 1; i < sc->sc_voltage_table_num; i++) { if (abs(sc->sc_voltage_table[i].duty - duty) < abs(sc->sc_voltage_table[bestidx].duty - duty)) bestidx = i; } uv = sc->sc_voltage_table[bestidx].microvolt; } else { /* calculate voltage from duty */ d0 = sc->sc_dutycycle_range[0]; d1 = sc->sc_dutycycle_range[1]; v0 = sc->sc_microvolt_min; v1 = sc->sc_microvolt_max; uv = (duty - d0) * (v1 - v0) / (d1 - d0) + v0; } *puvolt = uv; return 0; }