/* $NetBSD: aes_ssse3.c,v 1.2 2020/06/30 20:32:11 riastradh Exp $ */ /*- * Copyright (c) 2020 The NetBSD Foundation, Inc. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ /* * Permutation-based AES using SSSE3, derived from Mike Hamburg's VPAES * software, at , described in * * Mike Hamburg, `Accelerating AES with Vector Permute * Instructions', in Christophe Clavier and Kris Gaj (eds.), * Cryptographic Hardware and Embedded Systems -- CHES 2009, * Springer LNCS 5747, pp. 18-32. * * https://link.springer.com/chapter/10.1007/978-3-642-04138-9_2 */ #include __KERNEL_RCSID(1, "$NetBSD: aes_ssse3.c,v 1.2 2020/06/30 20:32:11 riastradh Exp $"); #include #ifdef _KERNEL #include #else #include #define panic(fmt, args...) err(1, fmt, ##args) #endif #include "aes_ssse3_impl.h" static const union m128const { uint64_t u64[2]; __m128i m; } mc_forward[4] = { {.u64 = {0x0407060500030201, 0x0C0F0E0D080B0A09}}, {.u64 = {0x080B0A0904070605, 0x000302010C0F0E0D}}, {.u64 = {0x0C0F0E0D080B0A09, 0x0407060500030201}}, {.u64 = {0x000302010C0F0E0D, 0x080B0A0904070605}}, }, mc_backward[4] = { {.u64 = {0x0605040702010003, 0x0E0D0C0F0A09080B}}, {.u64 = {0x020100030E0D0C0F, 0x0A09080B06050407}}, {.u64 = {0x0E0D0C0F0A09080B, 0x0605040702010003}}, {.u64 = {0x0A09080B06050407, 0x020100030E0D0C0F}}, }, ipt[2] = { {.u64 = {0xC2B2E8985A2A7000, 0xCABAE09052227808}}, {.u64 = {0x4C01307D317C4D00, 0xCD80B1FCB0FDCC81}}, }, opt[2] = { {.u64 = {0xFF9F4929D6B66000, 0xF7974121DEBE6808}}, {.u64 = {0x01EDBD5150BCEC00, 0xE10D5DB1B05C0CE0}}, }, dipt[2] = { {.u64 = {0x0F505B040B545F00, 0x154A411E114E451A}}, {.u64 = {0x86E383E660056500, 0x12771772F491F194}}, }, sb1[2] = { {.u64 = {0xB19BE18FCB503E00, 0xA5DF7A6E142AF544}}, {.u64 = {0x3618D415FAE22300, 0x3BF7CCC10D2ED9EF}}, }, sb2[2] = { {.u64 = {0xE27A93C60B712400, 0x5EB7E955BC982FCD}}, {.u64 = {0x69EB88400AE12900, 0xC2A163C8AB82234A}}, }, sbo[2] = { {.u64 = {0xD0D26D176FBDC700, 0x15AABF7AC502A878}}, {.u64 = {0xCFE474A55FBB6A00, 0x8E1E90D1412B35FA}}, }, dsb9[2] = { {.u64 = {0x851C03539A86D600, 0xCAD51F504F994CC9}}, {.u64 = {0xC03B1789ECD74900, 0x725E2C9EB2FBA565}}, }, dsbd[2] = { {.u64 = {0x7D57CCDFE6B1A200, 0xF56E9B13882A4439}}, {.u64 = {0x3CE2FAF724C6CB00, 0x2931180D15DEEFD3}}, }, dsbb[2] = { {.u64 = {0xD022649296B44200, 0x602646F6B0F2D404}}, {.u64 = {0xC19498A6CD596700, 0xF3FF0C3E3255AA6B}}, }, dsbe[2] = { {.u64 = {0x46F2929626D4D000, 0x2242600464B4F6B0}}, {.u64 = {0x0C55A6CDFFAAC100, 0x9467F36B98593E32}}, }, dsbo[2] = { {.u64 = {0x1387EA537EF94000, 0xC7AA6DB9D4943E2D}}, {.u64 = {0x12D7560F93441D00, 0xCA4B8159D8C58E9C}}, }, dks1[2] = { {.u64 = {0xB6116FC87ED9A700, 0x4AED933482255BFC}}, {.u64 = {0x4576516227143300, 0x8BB89FACE9DAFDCE}}, }, dks2[2] = { {.u64 = {0x27438FEBCCA86400, 0x4622EE8AADC90561}}, {.u64 = {0x815C13CE4F92DD00, 0x73AEE13CBD602FF2}}, }, dks3[2] = { {.u64 = {0x03C4C50201C6C700, 0xF83F3EF9FA3D3CFB}}, {.u64 = {0xEE1921D638CFF700, 0xA5526A9D7384BC4B}}, }, dks4[2] = { {.u64 = {0xE3C390B053732000, 0xA080D3F310306343}}, {.u64 = {0xA0CA214B036982E8, 0x2F45AEC48CE60D67}}, }, deskew[2] = { {.u64 = {0x07E4A34047A4E300, 0x1DFEB95A5DBEF91A}}, {.u64 = {0x5F36B5DC83EA6900, 0x2841C2ABF49D1E77}}, }, sr[4] = { {.u64 = {0x0706050403020100, 0x0F0E0D0C0B0A0908}}, {.u64 = {0x030E09040F0A0500, 0x0B06010C07020D08}}, {.u64 = {0x0F060D040B020900, 0x070E050C030A0108}}, {.u64 = {0x0B0E0104070A0D00, 0x0306090C0F020508}}, }, rcon = {.u64 = {0x1F8391B9AF9DEEB6, 0x702A98084D7C7D81}}, s63 = {.u64 = {0x5B5B5B5B5B5B5B5B, 0x5B5B5B5B5B5B5B5B}}, of = {.u64 = {0x0F0F0F0F0F0F0F0F, 0x0F0F0F0F0F0F0F0F}}, inv = {.u64 = {0x0E05060F0D080180, 0x040703090A0B0C02}}, inva = {.u64 = {0x01040A060F0B0780, 0x030D0E0C02050809}}; static inline __m128i loadroundkey(const uint32_t *rk32) { return _mm_load_si128((const void *)rk32); } static inline void storeroundkey(uint32_t *rk32, __m128i rk) { _mm_store_si128((void *)rk32, rk); } /* Given abcdefgh, set *lo = 0b0d0f0h and *hi = 0a0c0e0g. */ static inline void bytes2nybbles(__m128i *restrict lo, __m128i *restrict hi, __m128i x) { *lo = x & of.m; *hi = _mm_srli_epi32(x & ~of.m, 4); } /* Given 0p0q0r0s, return 0x0y0z0w where x = a/p, y = a/q, &c. */ static inline __m128i gf16_inva(__m128i x) { return _mm_shuffle_epi8(inva.m, x); } /* Given 0p0q0r0s, return 0x0y0z0w where x = 1/p, y = 1/q, &c. */ static inline __m128i gf16_inv(__m128i x) { return _mm_shuffle_epi8(inv.m, x); } /* * t is a pair of maps respectively from low and high nybbles to bytes. * Apply t the nybbles, and add the results in GF(2). */ static __m128i aes_schedule_transform(__m128i x, const union m128const t[static 2]) { __m128i lo, hi; bytes2nybbles(&lo, &hi, x); return _mm_shuffle_epi8(t[0].m, lo) ^ _mm_shuffle_epi8(t[1].m, hi); } static inline void subbytes(__m128i *io, __m128i *jo, __m128i x) { __m128i k, i, ak, j; bytes2nybbles(&k, &i, x); ak = gf16_inva(k); j = i ^ k; *io = j ^ gf16_inv(ak ^ gf16_inv(i)); *jo = i ^ gf16_inv(ak ^ gf16_inv(j)); } static __m128i aes_schedule_low_round(__m128i rk, __m128i prk) { __m128i io, jo; /* smear prk */ prk ^= _mm_slli_si128(prk, 4); prk ^= _mm_slli_si128(prk, 8); prk ^= s63.m; /* subbytes */ subbytes(&io, &jo, rk); rk = _mm_shuffle_epi8(sb1[0].m, io) ^ _mm_shuffle_epi8(sb1[1].m, jo); /* add in smeared stuff */ return rk ^ prk; } static __m128i aes_schedule_round(__m128i rk, __m128i prk, __m128i *rcon_rot) { /* extract rcon from rcon_rot */ prk ^= _mm_alignr_epi8(_mm_setzero_si128(), *rcon_rot, 15); *rcon_rot = _mm_alignr_epi8(*rcon_rot, *rcon_rot, 15); /* rotate */ rk = _mm_shuffle_epi32(rk, 0xff); rk = _mm_alignr_epi8(rk, rk, 1); return aes_schedule_low_round(rk, prk); } static __m128i aes_schedule_mangle_enc(__m128i x, __m128i sr_i) { __m128i y = _mm_setzero_si128(); x ^= s63.m; x = _mm_shuffle_epi8(x, mc_forward[0].m); y ^= x; x = _mm_shuffle_epi8(x, mc_forward[0].m); y ^= x; x = _mm_shuffle_epi8(x, mc_forward[0].m); y ^= x; return _mm_shuffle_epi8(y, sr_i); } static __m128i aes_schedule_mangle_last_enc(__m128i x, __m128i sr_i) { return aes_schedule_transform(_mm_shuffle_epi8(x, sr_i) ^ s63.m, opt); } static __m128i aes_schedule_mangle_dec(__m128i x, __m128i sr_i) { __m128i y = _mm_setzero_si128(); x = aes_schedule_transform(x, dks1); y = _mm_shuffle_epi8(y ^ x, mc_forward[0].m); x = aes_schedule_transform(x, dks2); y = _mm_shuffle_epi8(y ^ x, mc_forward[0].m); x = aes_schedule_transform(x, dks3); y = _mm_shuffle_epi8(y ^ x, mc_forward[0].m); x = aes_schedule_transform(x, dks4); y = _mm_shuffle_epi8(y ^ x, mc_forward[0].m); return _mm_shuffle_epi8(y, sr_i); } static __m128i aes_schedule_mangle_last_dec(__m128i x) { return aes_schedule_transform(x ^ s63.m, deskew); } static __m128i aes_schedule_192_smear(__m128i prkhi, __m128i prk) { __m128i rk; rk = prkhi; rk ^= _mm_shuffle_epi32(prkhi, 0x80); rk ^= _mm_shuffle_epi32(prk, 0xfe); return rk; } static __m128i aes_schedule_192_smearhi(__m128i rk) { return (__m128i)_mm_movehl_ps((__m128)rk, _mm_setzero_ps()); } void aes_ssse3_setenckey(struct aesenc *enc, const uint8_t *key, unsigned nrounds) { uint32_t *rk32 = enc->aese_aes.aes_rk; __m128i mrk; /* mangled round key */ __m128i rk; /* round key */ __m128i prk; /* previous round key */ __m128i rcon_rot = rcon.m; uint64_t i = 3; /* input transform */ rk = aes_schedule_transform(_mm_loadu_epi8(key), ipt); storeroundkey(rk32, rk); rk32 += 4; switch (nrounds) { case 10: for (;;) { rk = aes_schedule_round(rk, rk, &rcon_rot); if (--nrounds == 0) break; mrk = aes_schedule_mangle_enc(rk, sr[i-- % 4].m); storeroundkey(rk32, mrk); rk32 += 4; } break; case 12: { __m128i prkhi; /* high half of previous round key */ prk = rk; rk = aes_schedule_transform(_mm_loadu_epi8(key + 8), ipt); prkhi = aes_schedule_192_smearhi(rk); for (;;) { prk = aes_schedule_round(rk, prk, &rcon_rot); rk = _mm_alignr_epi8(prk, prkhi, 8); mrk = aes_schedule_mangle_enc(rk, sr[i-- % 4].m); storeroundkey(rk32, mrk); rk32 += 4; rk = aes_schedule_192_smear(prkhi, prk); prkhi = aes_schedule_192_smearhi(rk); mrk = aes_schedule_mangle_enc(rk, sr[i-- % 4].m); storeroundkey(rk32, mrk); rk32 += 4; rk = prk = aes_schedule_round(rk, prk, &rcon_rot); if ((nrounds -= 3) == 0) break; mrk = aes_schedule_mangle_enc(rk, sr[i-- % 4].m); storeroundkey(rk32, mrk); rk32 += 4; rk = aes_schedule_192_smear(prkhi, prk); prkhi = aes_schedule_192_smearhi(rk); } break; } case 14: { __m128i pprk; /* previous previous round key */ prk = rk; rk = aes_schedule_transform(_mm_loadu_epi8(key + 16), ipt); for (;;) { mrk = aes_schedule_mangle_enc(rk, sr[i-- % 4].m); storeroundkey(rk32, mrk); rk32 += 4; pprk = rk; /* high round */ rk = prk = aes_schedule_round(rk, prk, &rcon_rot); if ((nrounds -= 2) == 0) break; mrk = aes_schedule_mangle_enc(rk, sr[i-- % 4].m); storeroundkey(rk32, mrk); rk32 += 4; /* low round */ rk = _mm_shuffle_epi32(rk, 0xff); rk = aes_schedule_low_round(rk, pprk); } break; } default: panic("invalid number of AES rounds: %u", nrounds); } storeroundkey(rk32, aes_schedule_mangle_last_enc(rk, sr[i-- % 4].m)); } void aes_ssse3_setdeckey(struct aesdec *dec, const uint8_t *key, unsigned nrounds) { uint32_t *rk32 = dec->aesd_aes.aes_rk; __m128i mrk; /* mangled round key */ __m128i ork; /* original round key */ __m128i rk; /* round key */ __m128i prk; /* previous round key */ __m128i rcon_rot = rcon.m; unsigned i = nrounds == 12 ? 0 : 2; ork = _mm_loadu_epi8(key); /* input transform */ rk = aes_schedule_transform(ork, ipt); /* go from end */ rk32 += 4*nrounds; storeroundkey(rk32, _mm_shuffle_epi8(ork, sr[i].m)); rk32 -= 4; i ^= 3; switch (nrounds) { case 10: for (;;) { rk = aes_schedule_round(rk, rk, &rcon_rot); if (--nrounds == 0) break; mrk = aes_schedule_mangle_dec(rk, sr[i-- % 4].m); storeroundkey(rk32, mrk); rk32 -= 4; } break; case 12: { __m128i prkhi; /* high half of previous round key */ prk = rk; rk = aes_schedule_transform(_mm_loadu_epi8(key + 8), ipt); prkhi = aes_schedule_192_smearhi(rk); for (;;) { prk = aes_schedule_round(rk, prk, &rcon_rot); rk = _mm_alignr_epi8(prk, prkhi, 8); mrk = aes_schedule_mangle_dec(rk, sr[i-- % 4].m); storeroundkey(rk32, mrk); rk32 -= 4; rk = aes_schedule_192_smear(prkhi, prk); prkhi = aes_schedule_192_smearhi(rk); mrk = aes_schedule_mangle_dec(rk, sr[i-- % 4].m); storeroundkey(rk32, mrk); rk32 -= 4; rk = prk = aes_schedule_round(rk, prk, &rcon_rot); if ((nrounds -= 3) == 0) break; mrk = aes_schedule_mangle_dec(rk, sr[i-- % 4].m); storeroundkey(rk32, mrk); rk32 -= 4; rk = aes_schedule_192_smear(prkhi, prk); prkhi = aes_schedule_192_smearhi(rk); } break; } case 14: { __m128i pprk; /* previous previous round key */ prk = rk; rk = aes_schedule_transform(_mm_loadu_epi8(key + 16), ipt); for (;;) { mrk = aes_schedule_mangle_dec(rk, sr[i-- % 4].m); storeroundkey(rk32, mrk); rk32 -= 4; pprk = rk; /* high round */ rk = prk = aes_schedule_round(rk, prk, &rcon_rot); if ((nrounds -= 2) == 0) break; mrk = aes_schedule_mangle_dec(rk, sr[i-- % 4].m); storeroundkey(rk32, mrk); rk32 -= 4; /* low round */ rk = _mm_shuffle_epi32(rk, 0xff); rk = aes_schedule_low_round(rk, pprk); } break; } default: panic("invalid number of AES rounds: %u", nrounds); } storeroundkey(rk32, aes_schedule_mangle_last_dec(rk)); } __m128i aes_ssse3_enc1(const struct aesenc *enc, __m128i x, unsigned nrounds) { const uint32_t *rk32 = enc->aese_aes.aes_rk; __m128i io, jo; unsigned rmod4 = 0; x = aes_schedule_transform(x, ipt); x ^= loadroundkey(rk32); for (;;) { __m128i A, A2, A2_B, A2_B_D; subbytes(&io, &jo, x); rk32 += 4; rmod4 = (rmod4 + 1) % 4; if (--nrounds == 0) break; A = _mm_shuffle_epi8(sb1[0].m, io) ^ _mm_shuffle_epi8(sb1[1].m, jo); A ^= loadroundkey(rk32); A2 = _mm_shuffle_epi8(sb2[0].m, io) ^ _mm_shuffle_epi8(sb2[1].m, jo); A2_B = A2 ^ _mm_shuffle_epi8(A, mc_forward[rmod4].m); A2_B_D = A2_B ^ _mm_shuffle_epi8(A, mc_backward[rmod4].m); x = A2_B_D ^ _mm_shuffle_epi8(A2_B, mc_forward[rmod4].m); } x = _mm_shuffle_epi8(sbo[0].m, io) ^ _mm_shuffle_epi8(sbo[1].m, jo); x ^= loadroundkey(rk32); return _mm_shuffle_epi8(x, sr[rmod4].m); } __m128i aes_ssse3_dec1(const struct aesdec *dec, __m128i x, unsigned nrounds) { const uint32_t *rk32 = dec->aesd_aes.aes_rk; unsigned i = 3 & ~(nrounds - 1); __m128i io, jo, mc; x = aes_schedule_transform(x, dipt); x ^= loadroundkey(rk32); rk32 += 4; mc = mc_forward[3].m; for (;;) { subbytes(&io, &jo, x); if (--nrounds == 0) break; x = _mm_shuffle_epi8(dsb9[0].m, io) ^ _mm_shuffle_epi8(dsb9[1].m, jo); x ^= loadroundkey(rk32); rk32 += 4; /* next round key */ x = _mm_shuffle_epi8(x, mc); x ^= _mm_shuffle_epi8(dsbd[0].m, io) ^ _mm_shuffle_epi8(dsbd[1].m, jo); x = _mm_shuffle_epi8(x, mc); x ^= _mm_shuffle_epi8(dsbb[0].m, io) ^ _mm_shuffle_epi8(dsbb[1].m, jo); x = _mm_shuffle_epi8(x, mc); x ^= _mm_shuffle_epi8(dsbe[0].m, io) ^ _mm_shuffle_epi8(dsbe[1].m, jo); mc = _mm_alignr_epi8(mc, mc, 12); } x = _mm_shuffle_epi8(dsbo[0].m, io) ^ _mm_shuffle_epi8(dsbo[1].m, jo); x ^= loadroundkey(rk32); return _mm_shuffle_epi8(x, sr[i].m); }