//===------------------------- __complex_cmath.h --------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // std::complex header copied from the libcxx source and simplified for use in // OpenMP target offload regions. // //===----------------------------------------------------------------------===// #ifndef _OPENMP #error "This file is for OpenMP compilation only." #endif #ifndef __cplusplus #error "This file is for C++ compilation only." #endif #ifndef _LIBCPP_COMPLEX #define _LIBCPP_COMPLEX #include #include #define __DEVICE__ static constexpr __attribute__((nothrow)) namespace std { // abs template __DEVICE__ _Tp abs(const std::complex<_Tp> &__c) { return hypot(__c.real(), __c.imag()); } // arg template __DEVICE__ _Tp arg(const std::complex<_Tp> &__c) { return atan2(__c.imag(), __c.real()); } template typename enable_if::value || is_same<_Tp, double>::value, double>::type arg(_Tp __re) { return atan2(0., __re); } template typename enable_if::value, float>::type arg(_Tp __re) { return atan2f(0.F, __re); } // norm template __DEVICE__ _Tp norm(const std::complex<_Tp> &__c) { if (std::isinf(__c.real())) return abs(__c.real()); if (std::isinf(__c.imag())) return abs(__c.imag()); return __c.real() * __c.real() + __c.imag() * __c.imag(); } // conj template std::complex<_Tp> conj(const std::complex<_Tp> &__c) { return std::complex<_Tp>(__c.real(), -__c.imag()); } // proj template std::complex<_Tp> proj(const std::complex<_Tp> &__c) { std::complex<_Tp> __r = __c; if (std::isinf(__c.real()) || std::isinf(__c.imag())) __r = std::complex<_Tp>(INFINITY, copysign(_Tp(0), __c.imag())); return __r; } // polar template complex<_Tp> polar(const _Tp &__rho, const _Tp &__theta = _Tp()) { if (std::isnan(__rho) || signbit(__rho)) return std::complex<_Tp>(_Tp(NAN), _Tp(NAN)); if (std::isnan(__theta)) { if (std::isinf(__rho)) return std::complex<_Tp>(__rho, __theta); return std::complex<_Tp>(__theta, __theta); } if (std::isinf(__theta)) { if (std::isinf(__rho)) return std::complex<_Tp>(__rho, _Tp(NAN)); return std::complex<_Tp>(_Tp(NAN), _Tp(NAN)); } _Tp __x = __rho * cos(__theta); if (std::isnan(__x)) __x = 0; _Tp __y = __rho * sin(__theta); if (std::isnan(__y)) __y = 0; return std::complex<_Tp>(__x, __y); } // log template std::complex<_Tp> log(const std::complex<_Tp> &__x) { return std::complex<_Tp>(log(abs(__x)), arg(__x)); } // log10 template std::complex<_Tp> log10(const std::complex<_Tp> &__x) { return log(__x) / log(_Tp(10)); } // sqrt template __DEVICE__ std::complex<_Tp> sqrt(const std::complex<_Tp> &__x) { if (std::isinf(__x.imag())) return std::complex<_Tp>(_Tp(INFINITY), __x.imag()); if (std::isinf(__x.real())) { if (__x.real() > _Tp(0)) return std::complex<_Tp>(__x.real(), std::isnan(__x.imag()) ? __x.imag() : copysign(_Tp(0), __x.imag())); return std::complex<_Tp>(std::isnan(__x.imag()) ? __x.imag() : _Tp(0), copysign(__x.real(), __x.imag())); } return polar(sqrt(abs(__x)), arg(__x) / _Tp(2)); } // exp template __DEVICE__ std::complex<_Tp> exp(const std::complex<_Tp> &__x) { _Tp __i = __x.imag(); if (std::isinf(__x.real())) { if (__x.real() < _Tp(0)) { if (!std::isfinite(__i)) __i = _Tp(1); } else if (__i == 0 || !std::isfinite(__i)) { if (std::isinf(__i)) __i = _Tp(NAN); return std::complex<_Tp>(__x.real(), __i); } } else if (std::isnan(__x.real()) && __x.imag() == 0) return __x; _Tp __e = exp(__x.real()); return std::complex<_Tp>(__e * cos(__i), __e * sin(__i)); } // pow template std::complex<_Tp> pow(const std::complex<_Tp> &__x, const std::complex<_Tp> &__y) { return exp(__y * log(__x)); } // __sqr, computes pow(x, 2) template std::complex<_Tp> __sqr(const std::complex<_Tp> &__x) { return std::complex<_Tp>((__x.real() - __x.imag()) * (__x.real() + __x.imag()), _Tp(2) * __x.real() * __x.imag()); } // asinh template __DEVICE__ std::complex<_Tp> asinh(const std::complex<_Tp> &__x) { const _Tp __pi(atan2(+0., -0.)); if (std::isinf(__x.real())) { if (std::isnan(__x.imag())) return __x; if (std::isinf(__x.imag())) return std::complex<_Tp>(__x.real(), copysign(__pi * _Tp(0.25), __x.imag())); return std::complex<_Tp>(__x.real(), copysign(_Tp(0), __x.imag())); } if (std::isnan(__x.real())) { if (std::isinf(__x.imag())) return std::complex<_Tp>(__x.imag(), __x.real()); if (__x.imag() == 0) return __x; return std::complex<_Tp>(__x.real(), __x.real()); } if (std::isinf(__x.imag())) return std::complex<_Tp>(copysign(__x.imag(), __x.real()), copysign(__pi / _Tp(2), __x.imag())); std::complex<_Tp> __z = log(__x + sqrt(__sqr(__x) + _Tp(1))); return std::complex<_Tp>(copysign(__z.real(), __x.real()), copysign(__z.imag(), __x.imag())); } // acosh template __DEVICE__ std::complex<_Tp> acosh(const std::complex<_Tp> &__x) { const _Tp __pi(atan2(+0., -0.)); if (std::isinf(__x.real())) { if (std::isnan(__x.imag())) return std::complex<_Tp>(abs(__x.real()), __x.imag()); if (std::isinf(__x.imag())) { if (__x.real() > 0) return std::complex<_Tp>(__x.real(), copysign(__pi * _Tp(0.25), __x.imag())); else return std::complex<_Tp>(-__x.real(), copysign(__pi * _Tp(0.75), __x.imag())); } if (__x.real() < 0) return std::complex<_Tp>(-__x.real(), copysign(__pi, __x.imag())); return std::complex<_Tp>(__x.real(), copysign(_Tp(0), __x.imag())); } if (std::isnan(__x.real())) { if (std::isinf(__x.imag())) return std::complex<_Tp>(abs(__x.imag()), __x.real()); return std::complex<_Tp>(__x.real(), __x.real()); } if (std::isinf(__x.imag())) return std::complex<_Tp>(abs(__x.imag()), copysign(__pi / _Tp(2), __x.imag())); std::complex<_Tp> __z = log(__x + sqrt(__sqr(__x) - _Tp(1))); return std::complex<_Tp>(copysign(__z.real(), _Tp(0)), copysign(__z.imag(), __x.imag())); } // atanh template __DEVICE__ std::complex<_Tp> atanh(const std::complex<_Tp> &__x) { const _Tp __pi(atan2(+0., -0.)); if (std::isinf(__x.imag())) { return std::complex<_Tp>(copysign(_Tp(0), __x.real()), copysign(__pi / _Tp(2), __x.imag())); } if (std::isnan(__x.imag())) { if (std::isinf(__x.real()) || __x.real() == 0) return std::complex<_Tp>(copysign(_Tp(0), __x.real()), __x.imag()); return std::complex<_Tp>(__x.imag(), __x.imag()); } if (std::isnan(__x.real())) { return std::complex<_Tp>(__x.real(), __x.real()); } if (std::isinf(__x.real())) { return std::complex<_Tp>(copysign(_Tp(0), __x.real()), copysign(__pi / _Tp(2), __x.imag())); } if (abs(__x.real()) == _Tp(1) && __x.imag() == _Tp(0)) { return std::complex<_Tp>(copysign(_Tp(INFINITY), __x.real()), copysign(_Tp(0), __x.imag())); } std::complex<_Tp> __z = log((_Tp(1) + __x) / (_Tp(1) - __x)) / _Tp(2); return std::complex<_Tp>(copysign(__z.real(), __x.real()), copysign(__z.imag(), __x.imag())); } // sinh template __DEVICE__ std::complex<_Tp> sinh(const std::complex<_Tp> &__x) { if (std::isinf(__x.real()) && !std::isfinite(__x.imag())) return std::complex<_Tp>(__x.real(), _Tp(NAN)); if (__x.real() == 0 && !std::isfinite(__x.imag())) return std::complex<_Tp>(__x.real(), _Tp(NAN)); if (__x.imag() == 0 && !std::isfinite(__x.real())) return __x; return std::complex<_Tp>(sinh(__x.real()) * cos(__x.imag()), cosh(__x.real()) * sin(__x.imag())); } // cosh template __DEVICE__ std::complex<_Tp> cosh(const std::complex<_Tp> &__x) { if (std::isinf(__x.real()) && !std::isfinite(__x.imag())) return std::complex<_Tp>(abs(__x.real()), _Tp(NAN)); if (__x.real() == 0 && !std::isfinite(__x.imag())) return std::complex<_Tp>(_Tp(NAN), __x.real()); if (__x.real() == 0 && __x.imag() == 0) return std::complex<_Tp>(_Tp(1), __x.imag()); if (__x.imag() == 0 && !std::isfinite(__x.real())) return std::complex<_Tp>(abs(__x.real()), __x.imag()); return std::complex<_Tp>(cosh(__x.real()) * cos(__x.imag()), sinh(__x.real()) * sin(__x.imag())); } // tanh template __DEVICE__ std::complex<_Tp> tanh(const std::complex<_Tp> &__x) { if (std::isinf(__x.real())) { if (!std::isfinite(__x.imag())) return std::complex<_Tp>(_Tp(1), _Tp(0)); return std::complex<_Tp>(_Tp(1), copysign(_Tp(0), sin(_Tp(2) * __x.imag()))); } if (std::isnan(__x.real()) && __x.imag() == 0) return __x; _Tp __2r(_Tp(2) * __x.real()); _Tp __2i(_Tp(2) * __x.imag()); _Tp __d(cosh(__2r) + cos(__2i)); _Tp __2rsh(sinh(__2r)); if (std::isinf(__2rsh) && std::isinf(__d)) return std::complex<_Tp>(__2rsh > _Tp(0) ? _Tp(1) : _Tp(-1), __2i > _Tp(0) ? _Tp(0) : _Tp(-0.)); return std::complex<_Tp>(__2rsh / __d, sin(__2i) / __d); } // asin template __DEVICE__ std::complex<_Tp> asin(const std::complex<_Tp> &__x) { std::complex<_Tp> __z = asinh(complex<_Tp>(-__x.imag(), __x.real())); return std::complex<_Tp>(__z.imag(), -__z.real()); } // acos template __DEVICE__ std::complex<_Tp> acos(const std::complex<_Tp> &__x) { const _Tp __pi(atan2(+0., -0.)); if (std::isinf(__x.real())) { if (std::isnan(__x.imag())) return std::complex<_Tp>(__x.imag(), __x.real()); if (std::isinf(__x.imag())) { if (__x.real() < _Tp(0)) return std::complex<_Tp>(_Tp(0.75) * __pi, -__x.imag()); return std::complex<_Tp>(_Tp(0.25) * __pi, -__x.imag()); } if (__x.real() < _Tp(0)) return std::complex<_Tp>(__pi, signbit(__x.imag()) ? -__x.real() : __x.real()); return std::complex<_Tp>(_Tp(0), signbit(__x.imag()) ? __x.real() : -__x.real()); } if (std::isnan(__x.real())) { if (std::isinf(__x.imag())) return std::complex<_Tp>(__x.real(), -__x.imag()); return std::complex<_Tp>(__x.real(), __x.real()); } if (std::isinf(__x.imag())) return std::complex<_Tp>(__pi / _Tp(2), -__x.imag()); if (__x.real() == 0 && (__x.imag() == 0 || isnan(__x.imag()))) return std::complex<_Tp>(__pi / _Tp(2), -__x.imag()); std::complex<_Tp> __z = log(__x + sqrt(__sqr(__x) - _Tp(1))); if (signbit(__x.imag())) return std::complex<_Tp>(abs(__z.imag()), abs(__z.real())); return std::complex<_Tp>(abs(__z.imag()), -abs(__z.real())); } // atan template __DEVICE__ std::complex<_Tp> atan(const std::complex<_Tp> &__x) { std::complex<_Tp> __z = atanh(complex<_Tp>(-__x.imag(), __x.real())); return std::complex<_Tp>(__z.imag(), -__z.real()); } // sin template __DEVICE__ std::complex<_Tp> sin(const std::complex<_Tp> &__x) { std::complex<_Tp> __z = sinh(complex<_Tp>(-__x.imag(), __x.real())); return std::complex<_Tp>(__z.imag(), -__z.real()); } // cos template std::complex<_Tp> cos(const std::complex<_Tp> &__x) { return cosh(complex<_Tp>(-__x.imag(), __x.real())); } // tan template __DEVICE__ std::complex<_Tp> tan(const std::complex<_Tp> &__x) { std::complex<_Tp> __z = tanh(complex<_Tp>(-__x.imag(), __x.real())); return std::complex<_Tp>(__z.imag(), -__z.real()); } } // namespace std #endif