//===--- Mips.h - Declare Mips target feature support -----------*- C++ -*-===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file declares Mips TargetInfo objects. // //===----------------------------------------------------------------------===// #ifndef LLVM_CLANG_LIB_BASIC_TARGETS_MIPS_H #define LLVM_CLANG_LIB_BASIC_TARGETS_MIPS_H #include "clang/Basic/TargetInfo.h" #include "clang/Basic/TargetOptions.h" #include "llvm/ADT/Triple.h" #include "llvm/Support/Compiler.h" namespace clang { namespace targets { class LLVM_LIBRARY_VISIBILITY MipsTargetInfo : public TargetInfo { void setDataLayout() { StringRef Layout; if (ABI == "o32") Layout = "m:m-p:32:32-i8:8:32-i16:16:32-i64:64-n32-S64"; else if (ABI == "n32") Layout = "m:e-p:32:32-i8:8:32-i16:16:32-i64:64-n32:64-S128"; else if (ABI == "n64") Layout = "m:e-i8:8:32-i16:16:32-i64:64-n32:64-S128"; else llvm_unreachable("Invalid ABI"); if (BigEndian) resetDataLayout(("E-" + Layout).str()); else resetDataLayout(("e-" + Layout).str()); } static const Builtin::Info BuiltinInfo[]; std::string CPU; bool IsMips16; bool IsMicromips; bool IsNan2008; bool IsAbs2008; bool IsSingleFloat; bool IsNoABICalls; bool CanUseBSDABICalls; enum MipsFloatABI { HardFloat, SoftFloat } FloatABI; enum DspRevEnum { NoDSP, DSP1, DSP2 } DspRev; bool HasMSA; bool DisableMadd4; bool UseIndirectJumpHazard; protected: enum FPModeEnum { FPXX, FP32, FP64 } FPMode; std::string ABI; public: MipsTargetInfo(const llvm::Triple &Triple, const TargetOptions &) : TargetInfo(Triple), IsMips16(false), IsMicromips(false), IsNan2008(false), IsAbs2008(false), IsSingleFloat(false), IsNoABICalls(false), CanUseBSDABICalls(false), FloatABI(HardFloat), DspRev(NoDSP), HasMSA(false), DisableMadd4(false), UseIndirectJumpHazard(false), FPMode(FPXX) { TheCXXABI.set(TargetCXXABI::GenericMIPS); if (Triple.isMIPS32()) setABI("o32"); else if (Triple.getEnvironment() == llvm::Triple::GNUABIN32) setABI("n32"); else setABI("n64"); CPU = ABI == "o32" ? "mips32r2" : "mips64r2"; CanUseBSDABICalls = Triple.isOSFreeBSD() || Triple.isOSOpenBSD(); } bool isIEEE754_2008Default() const { return CPU == "mips32r6" || CPU == "mips64r6"; } bool isFP64Default() const { return CPU == "mips32r6" || ABI == "n32" || ABI == "n64" || ABI == "64"; } bool isNan2008() const override { return IsNan2008; } bool processorSupportsGPR64() const; StringRef getABI() const override { return ABI; } bool setABI(const std::string &Name) override { if (Name == "o32") { setO32ABITypes(); ABI = Name; return true; } if (Name == "n32") { setN32ABITypes(); ABI = Name; return true; } if (Name == "n64") { setN64ABITypes(); ABI = Name; return true; } return false; } void setO32ABITypes() { Int64Type = SignedLongLong; IntMaxType = Int64Type; LongDoubleFormat = &llvm::APFloat::IEEEdouble(); LongDoubleWidth = LongDoubleAlign = 64; LongWidth = LongAlign = 32; MaxAtomicPromoteWidth = MaxAtomicInlineWidth = 32; PointerWidth = PointerAlign = 32; PtrDiffType = SignedInt; SizeType = UnsignedInt; SuitableAlign = 64; } void setN32N64ABITypes() { LongDoubleWidth = LongDoubleAlign = 128; LongDoubleFormat = &llvm::APFloat::IEEEquad(); if (getTriple().isOSFreeBSD()) { LongDoubleWidth = LongDoubleAlign = 64; LongDoubleFormat = &llvm::APFloat::IEEEdouble(); } MaxAtomicPromoteWidth = MaxAtomicInlineWidth = 64; SuitableAlign = 128; } void setN64ABITypes() { setN32N64ABITypes(); if (getTriple().isOSOpenBSD()) { Int64Type = SignedLongLong; } else { Int64Type = SignedLong; } IntMaxType = Int64Type; LongWidth = LongAlign = 64; PointerWidth = PointerAlign = 64; PtrDiffType = SignedLong; SizeType = UnsignedLong; } void setN32ABITypes() { setN32N64ABITypes(); Int64Type = SignedLongLong; IntMaxType = Int64Type; LongWidth = LongAlign = 32; PointerWidth = PointerAlign = 32; PtrDiffType = SignedInt; SizeType = UnsignedInt; } bool isValidCPUName(StringRef Name) const override; void fillValidCPUList(SmallVectorImpl &Values) const override; bool setCPU(const std::string &Name) override { CPU = Name; return isValidCPUName(Name); } const std::string &getCPU() const { return CPU; } bool initFeatureMap(llvm::StringMap &Features, DiagnosticsEngine &Diags, StringRef CPU, const std::vector &FeaturesVec) const override { if (CPU.empty()) CPU = getCPU(); if (CPU == "octeon") Features["mips64r2"] = Features["cnmips"] = true; else if (CPU == "octeon+") Features["mips64r2"] = Features["cnmips"] = Features["cnmipsp"] = true; else Features[CPU] = true; return TargetInfo::initFeatureMap(Features, Diags, CPU, FeaturesVec); } unsigned getISARev() const; void getTargetDefines(const LangOptions &Opts, MacroBuilder &Builder) const override; ArrayRef getTargetBuiltins() const override; bool hasFeature(StringRef Feature) const override; BuiltinVaListKind getBuiltinVaListKind() const override { return TargetInfo::VoidPtrBuiltinVaList; } ArrayRef getGCCRegNames() const override { static const char *const GCCRegNames[] = { // CPU register names // Must match second column of GCCRegAliases "$0", "$1", "$2", "$3", "$4", "$5", "$6", "$7", "$8", "$9", "$10", "$11", "$12", "$13", "$14", "$15", "$16", "$17", "$18", "$19", "$20", "$21", "$22", "$23", "$24", "$25", "$26", "$27", "$28", "$29", "$30", "$31", // Floating point register names "$f0", "$f1", "$f2", "$f3", "$f4", "$f5", "$f6", "$f7", "$f8", "$f9", "$f10", "$f11", "$f12", "$f13", "$f14", "$f15", "$f16", "$f17", "$f18", "$f19", "$f20", "$f21", "$f22", "$f23", "$f24", "$f25", "$f26", "$f27", "$f28", "$f29", "$f30", "$f31", // Hi/lo and condition register names "hi", "lo", "", "$fcc0", "$fcc1", "$fcc2", "$fcc3", "$fcc4", "$fcc5", "$fcc6", "$fcc7", "$ac1hi", "$ac1lo", "$ac2hi", "$ac2lo", "$ac3hi", "$ac3lo", // MSA register names "$w0", "$w1", "$w2", "$w3", "$w4", "$w5", "$w6", "$w7", "$w8", "$w9", "$w10", "$w11", "$w12", "$w13", "$w14", "$w15", "$w16", "$w17", "$w18", "$w19", "$w20", "$w21", "$w22", "$w23", "$w24", "$w25", "$w26", "$w27", "$w28", "$w29", "$w30", "$w31", // MSA control register names "$msair", "$msacsr", "$msaaccess", "$msasave", "$msamodify", "$msarequest", "$msamap", "$msaunmap" }; return llvm::makeArrayRef(GCCRegNames); } bool validateAsmConstraint(const char *&Name, TargetInfo::ConstraintInfo &Info) const override { switch (*Name) { default: return false; case 'r': // CPU registers. case 'd': // Equivalent to "r" unless generating MIPS16 code. case 'y': // Equivalent to "r", backward compatibility only. case 'f': // floating-point registers. case 'c': // $25 for indirect jumps case 'l': // lo register case 'x': // hilo register pair Info.setAllowsRegister(); return true; case 'I': // Signed 16-bit constant case 'J': // Integer 0 case 'K': // Unsigned 16-bit constant case 'L': // Signed 32-bit constant, lower 16-bit zeros (for lui) case 'M': // Constants not loadable via lui, addiu, or ori case 'N': // Constant -1 to -65535 case 'O': // A signed 15-bit constant case 'P': // A constant between 1 go 65535 return true; case 'R': // An address that can be used in a non-macro load or store Info.setAllowsMemory(); return true; case 'Z': if (Name[1] == 'C') { // An address usable by ll, and sc. Info.setAllowsMemory(); Name++; // Skip over 'Z'. return true; } return false; } } std::string convertConstraint(const char *&Constraint) const override { std::string R; switch (*Constraint) { case 'Z': // Two-character constraint; add "^" hint for later parsing. if (Constraint[1] == 'C') { R = std::string("^") + std::string(Constraint, 2); Constraint++; return R; } break; } return TargetInfo::convertConstraint(Constraint); } const char *getClobbers() const override { // In GCC, $1 is not widely used in generated code (it's used only in a few // specific situations), so there is no real need for users to add it to // the clobbers list if they want to use it in their inline assembly code. // // In LLVM, $1 is treated as a normal GPR and is always allocatable during // code generation, so using it in inline assembly without adding it to the // clobbers list can cause conflicts between the inline assembly code and // the surrounding generated code. // // Another problem is that LLVM is allowed to choose $1 for inline assembly // operands, which will conflict with the ".set at" assembler option (which // we use only for inline assembly, in order to maintain compatibility with // GCC) and will also conflict with the user's usage of $1. // // The easiest way to avoid these conflicts and keep $1 as an allocatable // register for generated code is to automatically clobber $1 for all inline // assembly code. // // FIXME: We should automatically clobber $1 only for inline assembly code // which actually uses it. This would allow LLVM to use $1 for inline // assembly operands if the user's assembly code doesn't use it. return "~{$1}"; } bool handleTargetFeatures(std::vector &Features, DiagnosticsEngine &Diags) override { IsMips16 = false; IsMicromips = false; IsNan2008 = isIEEE754_2008Default(); IsAbs2008 = isIEEE754_2008Default(); IsSingleFloat = false; FloatABI = HardFloat; DspRev = NoDSP; FPMode = isFP64Default() ? FP64 : FPXX; for (const auto &Feature : Features) { if (Feature == "+single-float") IsSingleFloat = true; else if (Feature == "+soft-float") FloatABI = SoftFloat; else if (Feature == "+mips16") IsMips16 = true; else if (Feature == "+micromips") IsMicromips = true; else if (Feature == "+dsp") DspRev = std::max(DspRev, DSP1); else if (Feature == "+dspr2") DspRev = std::max(DspRev, DSP2); else if (Feature == "+msa") HasMSA = true; else if (Feature == "+nomadd4") DisableMadd4 = true; else if (Feature == "+fp64") FPMode = FP64; else if (Feature == "-fp64") FPMode = FP32; else if (Feature == "+fpxx") FPMode = FPXX; else if (Feature == "+nan2008") IsNan2008 = true; else if (Feature == "-nan2008") IsNan2008 = false; else if (Feature == "+abs2008") IsAbs2008 = true; else if (Feature == "-abs2008") IsAbs2008 = false; else if (Feature == "+noabicalls") IsNoABICalls = true; else if (Feature == "+use-indirect-jump-hazard") UseIndirectJumpHazard = true; } setDataLayout(); return true; } int getEHDataRegisterNumber(unsigned RegNo) const override { if (RegNo == 0) return 4; if (RegNo == 1) return 5; return -1; } bool isCLZForZeroUndef() const override { return false; } ArrayRef getGCCRegAliases() const override { static const TargetInfo::GCCRegAlias O32RegAliases[] = { {{"at"}, "$1"}, {{"v0"}, "$2"}, {{"v1"}, "$3"}, {{"a0"}, "$4"}, {{"a1"}, "$5"}, {{"a2"}, "$6"}, {{"a3"}, "$7"}, {{"t0"}, "$8"}, {{"t1"}, "$9"}, {{"t2"}, "$10"}, {{"t3"}, "$11"}, {{"t4"}, "$12"}, {{"t5"}, "$13"}, {{"t6"}, "$14"}, {{"t7"}, "$15"}, {{"s0"}, "$16"}, {{"s1"}, "$17"}, {{"s2"}, "$18"}, {{"s3"}, "$19"}, {{"s4"}, "$20"}, {{"s5"}, "$21"}, {{"s6"}, "$22"}, {{"s7"}, "$23"}, {{"t8"}, "$24"}, {{"t9"}, "$25"}, {{"k0"}, "$26"}, {{"k1"}, "$27"}, {{"gp"}, "$28"}, {{"sp", "$sp"}, "$29"}, {{"fp", "$fp"}, "$30"}, {{"ra"}, "$31"} }; static const TargetInfo::GCCRegAlias NewABIRegAliases[] = { {{"at"}, "$1"}, {{"v0"}, "$2"}, {{"v1"}, "$3"}, {{"a0"}, "$4"}, {{"a1"}, "$5"}, {{"a2"}, "$6"}, {{"a3"}, "$7"}, {{"a4"}, "$8"}, {{"a5"}, "$9"}, {{"a6"}, "$10"}, {{"a7"}, "$11"}, {{"t0"}, "$12"}, {{"t1"}, "$13"}, {{"t2"}, "$14"}, {{"t3"}, "$15"}, {{"s0"}, "$16"}, {{"s1"}, "$17"}, {{"s2"}, "$18"}, {{"s3"}, "$19"}, {{"s4"}, "$20"}, {{"s5"}, "$21"}, {{"s6"}, "$22"}, {{"s7"}, "$23"}, {{"t8"}, "$24"}, {{"t9"}, "$25"}, {{"k0"}, "$26"}, {{"k1"}, "$27"}, {{"gp"}, "$28"}, {{"sp", "$sp"}, "$29"}, {{"fp", "$fp"}, "$30"}, {{"ra"}, "$31"} }; if (ABI == "o32") return llvm::makeArrayRef(O32RegAliases); return llvm::makeArrayRef(NewABIRegAliases); } bool hasInt128Type() const override { return (ABI == "n32" || ABI == "n64") || getTargetOpts().ForceEnableInt128; } unsigned getUnwindWordWidth() const override; bool validateTarget(DiagnosticsEngine &Diags) const override; bool hasExtIntType() const override { return true; } }; } // namespace targets } // namespace clang #endif // LLVM_CLANG_LIB_BASIC_TARGETS_MIPS_H